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Scientific research is a process of inquiry - sequences of asking and 
answering questions about the nature of relationships among variables (e.g., 
How does A affect B? Do A and B vary together? Is A significantly different 
from B? and so on). Scientific research is carried out at many levels that differ 
in the types of questions asked and, therefore, in the procedures used to 
answer them. Thus, the choice of which methods to use in research is largely 
determined by the kinds of questions that are asked. 

In research, there are four basic questions about the relationships among 
variables: causality, differences between groups, direction and strength of 
relationships, and contingencies. This chapter will focus primarily on three 
of them: methods applied to questions of causality (experiments and quasi
experiments), methods to address questions about group differences 
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(differential research), and methods used to answer questions about the direc
tion and strength of relationships among variables (correlations). (For more 
detail on these topics see Graziano and Raulin, 1993.) 

EXPERIMENTAL RESEARCH 

Experiments are the most effective way to address questions of causality 
does one variable have an effect upon another (e.g., Does a new drug X 
reduce anxiety?). A precise and well-controlled experiment eliminates 
alternative explanations of results. If a well-designed experiment indicates 
that anxiety decreases when drug X is given, we shall have high confidence 
that it was drug X, and not some other factor, that brought about the 
decrease. 

In an experiment, the causal hypothesis (that X, the independent variable, 
will affect Y, the dependent variable) is tested by manipulating X and 
observing Y. In the simplest experiment, the independent variable is manipu
lated by presenting it to one group of subjects and not presenting it to 
another group. The two groups must be comparable prior to the manipula
tion so that any post-manipulation group difference is clearly due to the 
independent variable and not to some other, extraneous variable. If an 
uncontrolled, extraneous variable may have affected the outcome, then we 
have an alternative explanation of the results. Consequently, we cannot be 
sure which variables were actually responsible for the effects. Comparability 
of groups before the manipulation is assured by assigning subjects randomly 
to the groups. 

Well-designed experiments have sufficient controls to eliminate alternative 
explanations, allowing us to draw causal conclusions. Uncontrolled variables 
threaten the validity of the experiment and our conclusions. For example, 
suppose you develop a headache while working for hours at your computer. 
You stop, go into another room, and take two aspirin. After about 15 
minutes your headache is gone and you return to work. Like most people, 
you would probably conclude that the aspirin eliminated the headache, that 
is, you would infer a causal relationship between variable X (aspirin) and 
variable Y (headache). But other variables besides the aspirin might have 
been responsible for the improvement. You stopped working for awhile. You 
left the room and stretched your legs. You may have closed your eyes for a 
few minutes and rubbed your temples. You took a cool drink of water when 
you swallowed the aspirin. Mostly, you took a break from the intensive work 
and relaxed for a few minutes. All of those variables are potential contri
butors to the observed effect; they are confounding factors in the research. 
Therefore, it is not clear that it was the aspirin alone that reduced the head
ache. To be confident of a causal relationship between the aspirin and 
headache reduction, one would have to carry out an experiment designed 
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to control these confounding factors and to eliminate the alternative 
explanations. 

The discussion above refers to one of the most important concepts in 
experimentation - validity. A research study has good validity when it con
trols confounding factors and thus eliminates rival explanations, allowing a 
causal conclusion. To state it another way, uncontrolled extraneous variables 
threaten the validity of experiments. 

QUASI-EXPERIMENTAL PROCEDURES 

Experiments allow us to draw causal inferences with the greatest confidence. 
However, there are conditions under which we cannot meet all demands of 
a true experiment blll still want to address causal questions. In these situ
ations we can use quasi-experimental designs. Using quasi-experiments in 
clinical and field situations to draw cautious causal inferences is preferable 
to not experimenting at all. 

Quasi-experimental designs resemble experiments but are weak on some of 
the characteristics. Quasi-experiments include a comparison of at least two 
levels of an independent variable, but the manipulation is not always under 
the experimenter's control. For example, suppose we are interested in the 
health effects of a natural disaster such as a destructive tornado. We cannot 
manipulate the tornado but we can compare those who experienced the tor
nado with a group of people who did not. Likewise, in many field situations 
we cannot assign subjects to groups in an unbiased manner. Indeed, we often 
cannot assign subjects at all, but must accept the natural groups as they exist. 
Thus, in quasi-experimental designs: 

1 We state a causal hypothesis. 
2 We include at least two levels of the independent variable, although we 

may not manipulate it. 
3 We usually cannot assign subjects to groups, but must accept existing 

groups. 
4 We include specific procedures for testing hypotheses. 
5 We include some ciwtrols for threats to validity. 

Compare this list with the characteristics of a true experiment: 

I We state a causal hypothesis.
 
2 We manipulate the independent variable.
 
3 We assign subjects randomly to groups.
 
4 We use systematic procedures to test the hypothesized causal relationships.
 
5 We use specific controls to reduce threats to v;;lidity.
 

There are a number of basic quasi -experimental.: .,igns, but we shall focus
 
on four of the most important: non-equivaL '\ control-group designs,
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differential research designs, interrupted time-series designs, and single
subject designs. 

Non-equivalent control-group designs 

We can test causal hypotheses with confidence if we randomly assign subjects 
to groups, because such groups are likely to be equivalent at the beginning 
of the study. However, sometimes subjects cannot be assigned randomly to 
groups, and the groups may not be equivalent on some variables at the begin
ning of the study. Campbell and Stanley (1966) popularized the non
equivalent control-group design by suggesting that already existing groups 
can be similar to one another on most relevant variables even though there 
is no systematic assignment of subjects to groups. The more similar natural 
groups are to one another, the closer the design approximates a true experi
ment. Furthermore, Cook and Campbell (1979) showed that it is sometimes 
possible to draw strong conclusions from non-equivalent control-group 
studies, even when the groups are different, provided the researcher carefully 
evaluates all potential threats to validity. 

There are two problems with non-equivalent groups: groups may be 
different on the dependent measure(s) at the start of the study, and there may 
be other differences between groups. To address the first issue, we include a 
pre-test measure. The pre-test tells us how similar the groups are on the 
dependent variable(s) at the beginning of the study. The more similar the 
groups are, the greater control we have. To address the second issue - that 
groups may differ on variables other than the dependent variable - it is 
important to rule out each potential confounding variable. To do this, we 
must first identify potential confounding variables, measure them, and care
fully rule them out. Figure 1 shows six possible outcomes of a non-equivalent 
control-group design. In Figures l(a), I(b), and l(c) the pattern of scores for 
the experimental and control groups suggests no effect of the independent 
variable. In Figure l(a), neither group changes; the pre-test scores suggest 
that the group differences existed prior to the independent variable manipula
tion. Both Figures l(b) and l(c) show an equivalent increase in the groups 
on the dependent measure from pre-test to post-test, suggesting that there is 
no effect of the independent variable. Again, the pre-test in l(b) allows us to 
rule out the hypothesis that the group post-test differences are due to the 
independent variable. In Figure l(d), groups equivalent at the beginning of 
the study diverge; there does appear to be an effect of the independent vari
able. In both Figures l(e) and 1(0, the groups differ on the dependent 
measure at pre-test, and the experimental group changes more than the con
trol group after the manipulation. Figure 1(0 shows a slight change in the 
control group but a marked change in the experimental group, suggesting an 
effect of the independent variable. However, there is still the potentially con
founding factor of regression to the mean. Regression is a potential source 
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I 

of confounding whenever we begin an experiment with extreme scores. The 
marked pre-test difference between groups in Figure I(f) may represent 
extreme scores for the experimental group. In the course of the experiment 

I the scores for the group may have returned to the mean level represented by 
the control group. Consequently, we cannot be confident in attributing the 
results to the causal effects of the independent variable. In Figure I(e), the 

I· control group does not change but the experimental group changes markedly 
in the predicted direction, even going far beyond the level of the control i 

I 
group. This is called a crossover effect. The results give us considerable con
fidence in a causal inference. Maturation (normal changes in subjects over 
time) and history (changes in subjects during the study due to events other 
than the independent variable manipulation) are unlikely alternative 
hypotheses because the control group should also have been affected by these 
factors. Regression to the mean is also an unlikely alternative hypothesis 
because the experimental group increased not only to the mean of the control 
group but also beyond it. With these results a quasi-experimental design gives 
us fairly good confidence in a causal inference. 

These examples are reasonably interpretable. Other situations described by 
Cook and Campbell (1979) are more difficult, or even impossible, to 
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interpret. Using non-equivalent control group designs appropriately requires 
considerable expertise. 

Differential research designs 

In differential research, pre-existing groups (e.g., diagnostic groups) are com
pared on one or more dependent measures. There is no random assignment 
to groups; subjects are classified into groups and measured on the dependent 
variable. In essence, the researcher measures two variables (the variable 
defining the group and the dependent variable). Consequently, many 
researchers classify differential research as a variation of correlational 
research. We believe that differential research designs can employ control 
procedures not available in straight correlational research and therefore 
should be conceptualized as somewhere between quasi-experimental and cor
relational designs. We cannot draw causal conclusions from differential 
research, but we can test for differences between groups. 

A typical differential research study might compare depressed and non
depressed subjects. The dependent variable is selected for its theoretical sig
nificance. For example, we might measure people's judgment of the prob
ability of succeeding on a test of skill, as Alloy and Abramson (1979) did. 
They hypothesized that depressed subjects would be more likely to expect 
failure. This hypothesis was based on a causal model of depression that sug
gested that one's attributional style would affect the risk for depression. This 
causal model could not be tested directly with a differential research design, 
but the data from this study could test the plausibility of the model. If there 
were attributional differences in depressed and non-depressed subjects, then 
it is plausible that these differences predated the depression, perhaps even 
contributing to the development of depression. 

One could think of a differential research study as including an implicit 
manipulation that occurs prior to data collection - a manipulation that 
created the defining characteristic of the groups. This would be equivalent to 
comparing a group of people who lived through a tornado and a group who 
had never experienced one. The groups are defined by an event that predated 
the research study. However, the exposure to a tornado is likely a random 
event, so this comparison is conceptually close to an experiment. The subjects 
are assigned randomly, although not by the researcher; one group 
experiences the independent variable (i.e., the tornado), although again not 
controlled by the researcher; dependent measures are taken after the manip
ulation. We would classify such a study as a strong quasi-experimental design 
and would feel justified in drawing rather strong causal conclusions on the 
basis of our group comparisons. However, when the manipulation is some
thing less likely to be random, such as becoming depressed or not, the 
possibility of confounding is greatly increased. 

Whenever you start with pre-existing groups, the groups are likely to differ 
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on many variables other than the variable that defines the groups. For 
example, if we compare schizophrenic patients with a randomly selected non
patient control sample, the groups would differ not only on diagnosis, but 
probably also on social class, education level, average IQ, amount of 
hospitalization, history of medication use, and the social stigma associated 
with a psychiatric diagnosis. Any difference between our schizophrenic and 
control samples could be due to the disease or any of the other differences 
listed above. These variables are all confounded with the diagnosis of the 
subjects. It is impossible to draw a strong conclusion. 

Confounding is the norm in differential research, even in cases where you 
might not expect it. For example, if we compare children of various ages in 
a cross-sectional developmental study, we might expect that the children 
made it into the various groups by the random factor of when they were 
born. That may be true, but there are likely to be differences between the 
groups that are a function of historical factors unique to a given age range 
of children. These might include major historical events occurring at critical 
ages, differences in economic conditions that affect what resources are avail
able to the children at any given age, differences in school systems that may 
be the result of budget issues or political pressures, or even the impact of a 
single teacher. (Note that most samples of subjects for research come from 
accessible populations from a narrow geographic area. Therefore, it is 
possible that a single teacher could differentially affect the results.) Differ
ences between age groups that are the result of a different set of historical 
experiences are known as cohort effects. 

The ideal control group in differential research is identical to the 
experimental group on everything except the variable that defines the groups. 
This ideal often is impossible. Therefore, researchers attempt to equate the 
groups on critical variables, that is, variables that could confound the inter
pretation of the results. A variable can confound the results, first, if it has 
an effect on the dependent variable, and second, if there is a mean difference 
on the variable in the groups being compared. For example, IQ might con
found results in a study of cognitive styles, but hair colour is unlikely to 
because hair colour is probably unrelated to cognitive styles. However, even 
though IQ is a potential confounding variable, it cannot confound the results 
unless there is a mean difference between the groups. In differential research, 
it is common to include control groups that are matched on one or more of 
these critical variables to avoid confounding. For more discussion of this 
strategy, see Chapman and Chapman (1973) and Graziano and Raulin 
(1993). 

Interrupted time-series designs 

In interrupted time-series designs, a single group of subjects is measured sev
eral times both before and after some event or manipulation. The multiple 
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measures over time strengthen the design considerably over a simple pre-post 
design, controlIing many potential confounding factors. A major potential 
confounding factor in the simple pre-post study is regression to the mean. 
Behaviour fluctuates over time, displaying considerable variability. The inter
vention might be applied only at a high point in that natural variation, just 
before the behaviour decreased again. Thus, the observed changes in behavi
our may not be due to the treatment at all but only to the natural variability 
of behaviour. The same reduction might have been observed even if we had 
not applied the treatment. The multiple measures of the interrupted time
series design give several points of comparison, allowing us to rule out the 
effects of regression to the mean. We can see the natural variability and can 
see if the post-treatment change exceeds the natural variability. 

Figure 2 shows the results of an interrupted time-series study of disruption 
in autistic children (Graziano, 1974). Disruptive behaviour of four autistic 
children was monitored for a fuII year before the treatment (relaxation 
training) was introduced and a year following the treatment. Note that the 
variability during baseline disappears after treatment, with disruptive behavi
our dropping to zero and remaining there for a full year. Such results are not 
likely due to normal fluctuation or regression to the mean. They also seem 
unlikely to be due to maturation of alI subjects during the same period of 
time. With time-series designs, however, there are stiIl two potentialIy con
founding factors - history and instrumentation. History can confound 
results in any procedure that requires a fairly long period of time because 
other events might account for changes in the dependent variable. Thus, 
when using the interrupted time-series design, the experimenter must identify 
potential confounding due to history and carefully rule it out. Instrumenta
tion is another potential threat to validity. When new programmes are started 
there may be accompanying changes in the. way records are kept. The 
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Figure 2 An interrupted time-series design showing the effects of relaxation treat
ment on disruptive behaviour in autistic children 
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researcher must be careful to determine that an apparent change is not due 
to changes in record-keeping. 

The interrupted time-series design is useful in clinical or naturalistic set
tings where the effects of some event, naturally occurring or manipulated, 
can be assessed by taking multiple measurements both before and after the 
event. It can also be used in studies where the presumed causal event occurs 
to all members of a population. For example, the effects of a policy change 
(e.g., a change in the speed limit) could be evaluated with an interrupted 
time-series design using routinely gathered data (e.g., traffic fatality counts). 

The interrupted time-series design can be improved by adding one or more 
comparison groups. In our hypothetical study of the effects of a change in 
speed limit on the number of fatalities, we could use c0!Dparable data from 
a neighbouring state that did not reduce the speed limit. Such a comparison 
would help to control for potentially confounding factors such as history and 
maturation. 

Graphical presentations of data in the interrupted time-series design can 
provide considerable information. In a time-series study, the change in the 
time graph must be sharp to be interpreted as anything other than only a 
normal fluctuation. Slight or gradual changes are difficult to interpret. But 
in a time-series design, simply inspecting the graph is not enough. Testing the 
statistical significance of pre-post differences in time-series designs requires 
sophisticated procedures, which are beyond the scope of this chapter (see 
Glass, Willson, & Gottman, 1975; or Kazdin, 1992). 

Single-subject designs 

Single-subject designs were developed early in the history of experimental 
psychology and were used in both human and animal learning studies. Since 
the early 1960s they have become popular in clinical psychology. With single
subject designs we are able to manipulate independent variables, to observe 
their effects on dependent variables, to draw causal inferences, and to do so 
with a single subject. Modern clinical psychology is now heavily reliant on 
behaviour modification treatment methods, and behaviour modification 
research utilizes single-subject research designs refined from the work of B. F. 
Skinner. For more information on single-subject designs, consult Barlow and 
Hersen (1984), Kratochwill (1978), and Sidman (1960). 

Single-subject designs are variations of time-series designs. The same sub
ject is exposed to all manipulations, and we take dependent measurements 
of the same subject at different points in time. This allows us to compare 
measures taken before and after some naturally occurring event or an 
experimental manipulation. The basic comparison is between the same sub
ject's own pre-treatment and post-treatment responses. Note that at its 
simplest level, this resembles the pre-test-post-test comparison - a relatively 
weak non-experimental design. A control group would strengthen a pre-test 
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_ post-test design, but a control group is not possible when we have only one 
subject. Single-subject designs improve on the pre-post design, not by adding 
a control group, but by adding more conditions to the experiment. If the 
dependent variable changes in the predicted direction at each manipulation, 
we can have reasonable confidence that the manipulation is responsible for 
the observed change in the dependent variable. There are several single
subject designs, including reversal or ABA designs, multiple baseline designs, 
and single-subject, randomized, time-series designs. 

Reversal (ABA) design 

In reversal or ABA designs, the effects of an independent variable on a 
dependent variable are demonstrated by measuring the dependent variable at 
three or four points in time. There is a no-treatment baseline period during 
which the dependent behaviour is only observed, a treatment period in which 
the manipulation is carried out, and a return or reversal to the no-treatment 
condition. The effects of the independent variable (the treatment) on the 
dependent variable (the behaviour to be changed) is demonstrated if the 
behaviour changes in the predicted direction whenever the conditions are 
reversed. We often strengthen the design by measuring the dependent vari
able several times during each condition. A hypothetical study will help to 
describe the general format used. The study concerns self-stimulatory behavi
our of a retarded child, Terry. After observing Terry in the classroom, a psy
chologist forms the tentative hypothesis that the teacher's attention is 
reinforcing the self-stimulatory behaviour. That is, whenever Terry begins 
her self-stimulatory activity, the teacher tries to soothe and comfort her. The 
teacher does not realize that it may be her efforts to help Terry control the 
behaviour that are actually helping to maintain it. 

To test the hypothesis the psychologist sets up an ABA design, in which 
condition A, the baseline, involves the teacher's usual approach of attending 
to Terry whenever she displays the self-stimulatory behaviour. Condition B 
is the treatment - a differential reinforcement procedure in which the teacher 
provides attention and support for Terry whenever she refrains from the self
stimulatory behaviour, but withdraws attention when Terry engages in self
stipulatory behaviour. Precise observations are carried out for one hour at 
the same time each day. The graph in Figure 3 shows the behavioural changes 
as the A and B conditions are sequentially reversed. The graph suggests that 
there may be a causal relationship between teacher attention and Terry's self
stimulatory behaviour. Notice that the psychologist has not limited the 
approach to only three conditions, ABA, but has added another reversal at 
the end for an ABAB procedure. The ABA sequence is sufficient to suggest 
causality, but the demonstration of a casual link creates an ethical demand 
to return Terry to the optimal state. 
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Figure 3 A reversal design showing the effects of contingent reinforcement on self
stimulatory behaviour of a single child 

Multiple baseline design 

Although the ABA design can provide a powerful demonstration of the effect 
of one variable on another, there are situations in which reversal procedures 
are not feasible or ethical. For example, suppose in our example of Terry 
above, the self-stimulatory behaviour was injurious, such as severe head
banging. We would be unwilling to reverse conditions once we achieved 
improved functioning because it could risk injury. Instead, we could use a 
multiple baseline design. 

In the multiple baseline design, the effects of the treatment are demon
strated on different behaviours successively. To illustrate, we shalI use an 
example similar to the previous example. Suppose that a fifth-grade boy 
(about 10 years old) is doing poorly in school, although he appears to have 
the ability to achieve at a high level. He also disrupts class frequently and 
often fights with other students. A psychologist spends several hours 
observing the class and notes some apparent contingencies regarding the 
boy's behaviour. The teacher, attempting to control the boy, pays more 
attention to him when he is disruptive - scolding, correcting, lecturing him, 
and making him stand in a corner whenever he is caught fighting. The psy
chologist notes that the boy seems to enjoy the attention. However, on those 
rare occasions when he does his academic work quietly and welI, the teacher 
ignores him completely. "When he is working, I leave welI enough alone," 
the teacher says. "I don't want to risk stirring him up." Based on these 
observed contingencies, the psychologist forms the tentative hypothesis that 
the contingent teacher attention to the boy's disruptive behaviour and 
fighting may be a major factor in maintaining these behaviours, whereas the 
teacher's failure to reward the boy's good academic work may account for 
its low occurrence. The psychologist sets up a multiple-baseline design to test 
the hypothesis about the importance of teacher attention on disruptive 
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behaviour, fighting, and academic performance. The independent variable 
here is teacher attention. 

Figure 4 shows the sequence of phases of the hypothetical study. During t. 

Phase 1 alI three dependent variables are measured while the teacher con
!I!tinues the usual procedure of trying to punish the disruption and fighting 

while ignoring the positive academic behaviour. As seen in Figure 4, disrup
tive behaviour and fighting are high and academic performance is low. In 
Phase 2, the teacher's attention to fighting is withdrawn and positive atten
tion is made contingent on academic work. In Phase 3, these procedures con
tinue and the teacher withdraws attention for disruption as welI as for 
fighting. The measured changes in the dependent variables associated with 
the independent variable manipulations provide evidence for the hypothesis 
that contingent teacher attention is an important controlling factor in the II'i

II
I

child's behaviour. I , 
Single-subject, randomized, time-series design 

When a reversal design is not appropriate and a multiple baseline procedure
 
is not feasible because we want to study only one behaviour, the single

subject, randomized, time-series design can be used. This design is an inter I
 

rupted time-series design for a single subject with one additional element  I
 
the randomized assignment of the manipulation in the time-series.
 

The single-subject, randomized, time-series design could be applied in the I
II 

example above, but let us take another example. Suppose that Joey, another 
child in the special class, does not complete his daily work. During lesson 
periods, when he should be responding to a workbook lesson, Joey looks 
around the room or just closes his eyes and does no work. Reminders from 
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Figure 4 A multiple baseline design showing improvement in disruptive behaviour, 
fighting, and academic performance for a single child contingent upon teacher 

attention 
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II the teacher have little effect. An effective motivational intervention with 

! children is a token reinforcement system in which paper or plastic tokens are 
given to the child whenever he engages in the desired behaviour. The tokens 
serve as immediate secondary reinforcement for the desired behaviour. They 
are saved by the child and cashed in for items and privileges. If we were to 
employ a single-subject, randomized, time-series design, we might decide to 
measure the child's homework achievement for 6 weeks (30 school days). We 
might decide that we want at least 5 days before and after the implementation 
of the treatment. This ensures adequate pre-treatment and post-treatment 
measures. We then use a table of random numbers to select randomly one 
of the middle 20 days as our point for introducing the manipulation. The 
manipulation is the use of token reinforcement for homework achievement. 
Suppose we randomly select the ninth day as the point for introducing the 
token reinforcement programme. The beginning of the manipulation is 
preceded by 8 days of baseline measurement followed by 22 days of measure
ments of the dependent variable under the token reinforcement condition. If 
the time graph shows a marked improvement in homework achievement co
incident with the ninth measurement, we have a convincing illustration of the 
effects of the token reinforcement. Note that it is unlikely that such marked 
improvement would occur by chance, or because of maturational or his

I
j, 

torical factors, at exactly the point at which we have randomly introduced 
the treatment. 

I 
I 
I 

CORRELATIONAL APPROACHES 

Like quasi-experimental designs, correlation designs are used in situations in 
which the manipulation of an independent variable is either impossible or 
unethical. Because there is no experimental manipulation, one must be cau
tious in drawing causal conclusions. In fact, most correlational procedures 
are not powerful enough to justify causal interpretations. 

Simple correlations 

The correlation coefficient is probably the single most widely computed 
statistic in psychology. In many research studies, the purpose of the study is 
to produce measures of relationships between variables (i.e., correlations). 
Even in experimental designs or other designs, it is common to compute 
numerous correlation coefficients to help interpret the data. These correlation 
coefficients mayor may not be reported in the final paper, but they are often 
routinely computed. Correlations between demographic variables and per
formance on the dependent measure often help us to identify potential con
founding variables in a current study or in a future study that might be run. 

The most commonly used correlation coefficient is the Pearson product
moment correlation. This coefficient is used when both variables are 
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measured on an interval or ratio scale. A Spearman rank-order correlation 
is preferred if at least one of the two variables is measured on an ordinal 
scale. Computational procedures for either of these coefficients are readily 
available in almost any undergraduate statistics textbook. There are other 
correlation coefficients available as well, which we shall discuss shortly. The 
range for both the Pearson and Spearman correlations is -1.00 to +1.00. A 
correlation of +1.00 indicates a perfect positive relationship (i.e., as one vari
able increases the other increases by a predictable amount). A correlation of 
-1.00 indicates a perfect negative relationship (Le., as one variable increases 
the other variable decreases by a predictable amount). The sign indicates the 
direction of the relationship and the absolute size of the correlation indicates 
the strength of the relationship. 

Correlations are most easily visualized in a scatter plot. Each person is 
plotted in a coordinate system in which their location is determined by the 
scores on variables X and Y. Figure 5 gives several examples of scatter plots, 
each indicating a particular degree of relationship. The actual product
moment correlation is indicated next to each scatter plot. Figures 5(a) and 
5(b) illustrate scatter plots for strong positive and negative correlations, 
respectively. Figures 5(c) and 5(d) illustrate zero correlations. Note a zero 
correlation is often described as circular scatter plot. The scatter plot is cir
cular, however, only if the variance on variables X and Yare equal, some
thing that rarely occurs. Figure 5(d), for example, illustrates a zero 
correlation where variable X has a greater variance than variable Y. In this 
situation, the circular correlation is elongated horizontally. Figure 5(e) shows 
a perfect positive relationship with all the points clearly lining up on a 
straight line. Figure 5(f) shows the powerful effect of a single deviant score, 
especially when you have a small sample. In this case, 14 of the 15 data points 
clearly seem to show a zero correlation, but the correlation when you include 
the fifteenth point (at 10, 10) is .77. Finally, scatter plots shown in Figure 5(g) 
and 5(h) i1Iustrate non-linear correlations. The product-moment correlation 
is sensitive only to the linear component. In Figure 5(g), the correlation is 
essentially zero, whereas in Figure 5(h), the correlation is somewhat positive. 
In both Figure 5(g) and 5(h), the product-moment correlation is an inappro
priate measure of relationship. Simple product-moment correlation should 
be used only in situations where you anticipate a linear relationship between 
variables X and Y. 

As mentioned earlier, the strength of the relationship between X and Y is 
illustrated by the size of the correlation regardless of the sign. A commonly 
used index is the square of the correlation, which can be interpreted as the 
proportion of variability in one variable that is predictable on the basis 
of knowing the scores on the second variable. This statement is usually 
shortened to "the proportion of variance accounted for". 
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Figure 5 Several examples of scatter plots, regression lines, and the product
moment correlations that each plot represents 

Advanced correlational techniques 

More sophisticated correlational procedures are also available. You can cor
relate one variable with an entire set of variables (multiple correlation) or one 
set of variables with another set of variables (canonical correlation). It is also 
possible to correlate one variable with another after statistically removing the 
effects of a third variable (partial correlation). Discussion of these procedures 
is beyond the scope of this chapter, but the interested reader is referred to 
Nunnally (1976) for a more detailed discussion. 
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Simple linear regression 

Regression techniques utilize the observed relationship between two or more 
variables to make predictions. The simplest regression technique is linear 
regression, with one variable being predicted on the basis of scores on a 
second variable. The equation below shows the general form for the predic
tion equation. 

Predicted Y score = (b x X) + a 

The values of the slope b and the intercept a in the above equation are a func
tion of the observed correlation and the variances for both the X and Y vari
ables. The computational detail can be found in virtually any undergraduate 
statistics text (e.g., Shavelson, 1988). In each of the eight scatter plots shown 
in Figure 5, the regression line for predicting Y from X has been drawn. 
When the correlation is zero the regression line is horizontal with an intercept 
at the mean for Y. In other words, if X and Yare unrelated to one another 
the mean of the Y distribution is the best prediction of Y, regardless of the 
value of X. 

Advanced regression techniques 

It is possible to use the relationships of several variables to the variable that 
you wish to predict in a procedure known as multiple regression. Multiple 
regression is also a linear regression technique, except that instead of working 
in the two-dimensional space indicated in Figure 5, we are now working in 
N-dimensional space, where N is equal to the number of predictor variables 
plus one. For example, if you have two predictor measures and one criterion 
measure, the prediction equation would be represented by a line in the three
dimensional space defined by these measures. If you have several predictor 
measures, visualizing multiple regression is difficult, even though the proce
dure is conceptually straightforward. 

Although it is possible to put all of the predictor variables into the regres
sion equation, it is often unnecessary to do so in order to get accurate predic
tions. The most commonly used procedure for a regression analysis is a 
procedure called stepwise regression, which uses a complex algorithm to enter 
variables into the equation one at a time. The algorithm starts by entering 
the variable that has the strongest relationship with the variable that you 
want to predict, and then selects additional variables on the basis of the 
incremental improvement in prediction that each variable provides. The com
putational procedures for stepwise regression are too complex to be done 
without the use of a statistical analysis program such as SPSS or SPSS/PC + 
(Norusis, 1990b). 

All of the regression models discussed above assume linear regression. In 
Figure 5(g) and 5(h), the scatter plot suggests that there is a non-linear 
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Invulnerabilil:relationship between variables X and Y. When a non-linear relationship 
feeling

exists, there are non-linear statistical procedures for fitting a curve to the 
;I';;~ A -.	 _ ~fe-sex behaviour 

data. These procedures are well beyond the scope of this chapter: the 
interested reader is referred to Norusis (l990a). e	 Availability of Sex-sex 

information knowledge ~ 
Path analysis (/t~~ /

A procedure that is rapidly becoming the standard for analysis of correla
tional data is path analysis. Path analysis is one of several regression proce Belief that AIDS is not just a 

gay of IV drug user's disease dures that fall under the general category of latent variable models. All latent 
variable models make the assumption that the observed data are due to a set 

Figure 6 A hypothetical example of a path analysis of unobserved (i.e., latent) variables. Factor analysis is probably the most
 
widely used of the latent variable models.
 

Path analysis seeks to test the viability of a specified causal model by fac
 We have labelled the various paths in Figure 6 with lower-case letters. We 
toring the matrix of correlations between variables within the constraints of shall solve for the strength of path coefficients for each of these paths. We 
the model. This process is best illustrated with an example. Suppose that we have also included residual arrows for variables D and E. These residual 
had three variables (A, B, and C) that we hypothesize are causally related arrows will have a strength that represents the unexplained variance in our 
to another variable (E). Further, we hypothesize that the causal effects of model. Technically, all variables would have residual arrows, but it is cus
variables Band C on variable E are indirect - that is, variables Band Care tomary not to include them with the initial variables (i.e., variables A, B, and 
causally related to a variable D which in turn is causally related to variable C in our model). These variables represent our starting-point; our model does 
E. This model is illustrated in Figure 6. Straight lines in a path model rep not address the question of what factors cause these initial states. :i resent hypothesized causal connections, while curved lines represent potential To evaluate the feasibility of our causal model, we need measures of ther correlations that are not hypothesized to be causal. To make our example variables on a large sample of subjects. We need not have measures of all of! more intuitive, we shall present a scenario where such a model might make 

ii 
the variables to do the computation; some variables may be unseen (latent). 

sense. We shall assume that we are studying high-risk sexual behaviour (i.e., We start by computing a correlation matrix from which the path coefficients 
sexual behaviour that increases the risk of HIV infection). Variable E in this are computed. The actual path coefficient computations are beyond the scope 
model is safe-sex behaviour in heterosexual college students. We are ofthis chapter (the interested reader is referred to Loehlin, 1992). Path ana
hypothesizing that safe-sex behaviour is a function of knowledge ofsafe-sex lysis tests the feasibility of a hypothesized causal model. If the absolute value 
procedures (variable D) and how vulnerable one feels (variable A). Whether of the path coefficients in the model are generally large and the residual 
one obtains knowledge of safe-sex procedures is hypothesized to be a func coefficients are generally small, the model is feasible. You strive to create as 

'I tion of whether such information is available to people (variable B) and 
., 

parsimonious a path model as possible. Generally, as you include more 
whether one believes that AIDS is not just a disease found in gay men or IV paths, you will explain more of the variance, but you also run the risk of 
drug users (variable C). In our model, we are suggesting that simply making capitalizing on chance variance. 
information about safe-sex procedures available will not lead to the practice 
of safe sex unless (I) the information is learned, which will occur only if (2) 

CONCLUSIONthe person believes that heterosexual sex represents a risk. Even if the person 
it'I' knows about safe sex procedures, the behaviour will not be practised unless If given a choice, a researcher should use an experimental design. MaI 

(3) the person feels vulnerable to AIDS at the time of engaging in sex. We nipulating variables and observing their effects on other variables, coupled 
could expand this model by adding other variables if we wanted. For with the other controls that are a part of experimental research, gives us 
example, we might hypothesize that vulnerability is increased if the person the greatest confidence that the observed relationship is causal. However, 
knows people with HIV infection and is temporarily decreased if the person there are many circumstances in which experimental research is impractical 
has been drinking (i.e., additional variables F and G are causally related to or unethical. This chapter has described some of the many quasi
variable A). However, we shall restrict our model to the five variables shown experimental and correlational designs available for these situations. Data 
in Figure 6 to illustrate the procedures. 
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from these designs should be interpreted with caution because the possibility 
of confounding is much larger than with experimental designs. However, 
these designs have proved their value in psychological research. 
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